IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Analysis of Existing Water Distribution Network, To Investigate Its Adequacy in Performances of Its Function. A Case Study of: Badarawa/Malali Distribution Network

> A Saminu^{*1}, IAbubakar², L Rabia³, I Abdullahi⁴ ^{*1, 3,4}Department of civil Engineering, Nigerian Defence Academy, Kaduna ²Department of civil Engineering, Ahmadu Bello University Zaria saminuahmed4real@yahoo.com

Abstract

EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks. A network consists of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemical species throughout the network, EPANET is designed to be a research tool for improving our understanding of the movement and fate of drinking water constituents within distribution systems. It can be used for many different kinds of applications in distribution systems analysis. In this paper it was used to analyze the existing water distribution network in order to investigate its adequacy in performance of its function, the results obtained from this study revealed a lot of deficiencies in its design implementation and usage.

Introduction

A water distribution network is a system containing pipes, reservoir, pumps and valves of different types, which are connected to each other to provide water to consumers. It is a vital component of the urban infrastructure and required significant investment. A water distribution system typically falls into one of two categories: (1) New design or (2) Rehabilitation of an existing works. A new design problem consists of a network layout where all pipes have to be assigned a diameter (i.e. The location of all pipes is given). A rehabilitation problem contain an existing network that requires an increase in its hydraulic capacity (e.g. via replacement, cleaning, or parallization of existing pipes) and/or provision of water to new consumers (e.g. via expansion within pipes). Effective water supply system is of paramount importance in designing a new water distribution network or in expanding the existing one. It is essential to investigate and establish a reliable network ensuring adequate head

Optimizing the performance of water distribution network can take many forms, and are comprised of many components and have many different performance criteria, for example, the decision variable within the optimization problem could involve the selection of diameter sizes for all the pipes, the sizes and location of tanks, valves, pressure setting and valve location and pump types and locations. In addition to these, the demand in the system could involve a range of demand cases including peak hours, fire loading and extended period of simulation,

There is extensive literature on application of computer software's in finding different solution to water distribution network. Researchers have been investigating effectiveness in performance of water distribution network with various approaches using different computer software's, such as optiga, epanet and opti designer.

Alperovits and Shamir (1977) presented a research on checking the performance of a water distribution network using a popular software known as opti designer. The length of pipe with differential diameter was used as decision making variable. The LPG method was later further improved by Kessler and Shamir (1989), for example. Kessler and Shamir (1989)presented two stages LPG method. In the first stage, parts of the variables are kept constant while other variables are solved separately in order to obtain a good network performances. In the second step, search for identifying the good network performance is conducted based on the gradient of the objective function. Flows are modified according to gradient of the objective functions. Eiger et al. (1994) used the same formulation of Kessler and Shamir (1989) and solved a given problem. Savic and Walters (1997) also determined deficiencies in performance in a given water distribution network in conjunction with EPANET network solver.

However, the optimal network design is quite complicated due to nonlinear relationship between flow and head loss and the presence of discrete variables, such as market pipe sizes (Kessler and Shamir, (1989); Eiger et al. (1994); Dandy et at. (1996)). In addition, the pipe length, with their various diameters represents the cost of the network, is also nonlinear and causes great difficulty in the design of the network. Researchers in recent years have focused on probabilistic approach to overcome these difficulties (Savic and Walters, (1997); Abebeand Solomatine, (1998); Cunha and Sousa, (1999); Eusuff and Lansey, (2003) considering a combination of random and deterministic steps.

Other Previous works performed using "EPANET" includes the work by TospornSampon et al (2007) to solve a problem of split-pipe design of water distribution network. As mentioned earlier, the network simulation model used is EPANET, Roesman (2000)calculates nodal heads and flow in pipelines, storage in each tank, and concentration of substance throughout the system, and water age and source tracing both as strategic and dynamic loading conditions. Hazen Williams equation is used due to its wide applicability in water supply.

The main focus of this research is to model the existing water distribution network in order to investigate its adequacy in performance of its function, at the same time to identify all the deficiencies in its design implementation and usage.

Study Area

Our study area is Badarawa and Malali that fall under Kaduna North Local Government. It lies on the latitude $10^0 - 31^1$ and longitude $7^{0-2}7^1$ (source: Kaduna State Environmental Protection Authority)]. The topography of the area is a differential one, i.e. one side of the area is relatively flat , while the other side is slightly elevated (see figure 1, below).

Fig 1:⊠-The Study Area

Methodology

Materials

The materials used includes: topographical map, water demand, population, distribution network parameters such as: elevations, pipe diameter, pipe length and pipe material. Finally the EPANET software.

Method of Data Collection

The topographical map of Badarawa / Malali study area, was produced by using GIS software, after obtaining the map, the existing water network for the study area was drawn on the map, together with the junctions and their elevations. This was done with the help of experienced water board personnel, after proper editing, the full water supply network of the area was produced on the recent topographical map, and later transferredinto the Epanet software work space using a process called map transport. The demand was obtain after surveying the network in the area, average of 25 to 30 houses were connected to each individual node/Junction also the study area falls under the category

http://www.ijesrt.com

of urban settlement, as a result of this development, the standard from the Federal Ministry of Water Resources manual on water demand was used, for this research 180 L/C/D was considered with an average of nine (9) persons in each house. We obtained a demand at particular junction by multiplying (number of houses at junction by number of people in the house by 180L/C/D).

Analysis/Result

In this research the existing distribution network of Badarawa/ Malali was studied and analyzed. It consists of 145 pipes of different materials 120 junctions, two tanks, and a source reservoir (i.e treatment plant) from which water is pumped through a pumping main to the overhead reservoir and later distributed to the network by gravity, as shown below:

FiG 2: Badarawa /Malali existing Water Supply network.

As earlier mentioned epanet software was used to carry out the analysis for the above network, EPANET is a computer program that performs extended period simulation of hydraulic and water quality behavior within pressurized pipe networks. A network consists of pipes, nodes (pipe junctions), pumps, valves and storage tanks or reservoirs. EPANET tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, it provides an integrated environment for editing network input data, running hydraulic and water quality simulations, and viewing the results in a variety of formats.

EPANET'S workspace

The basic EPANET workspace is pictured below. It consists of the following userinterface elements: a Menu Bar, two Toolbars, a Status Bar, the Network Mapwindow, a Browser window, and a Property Editor window.

http://www.ijesrt.com

Steps in Using EPANET

The following steps were carried out using EPANET to model the existing network for Badarawa/ Malali water distribution network:

- 1. Draw a network representation of your distribution system or import a basic description of the network. (In this research GIS packages were used to draw the network , and imported to the epanet)
- 2. Edit the properties of the objects that make up the system
- 3. Select a set of analysis options
- 4. Run a hydraulic/water quality analysis

The analysis of any water distribution network includes determining quantities of flow and head losses in the various pipe lines, and resulting residual pressure at various demands in the network junctions. The results obtain for the existing network for badarawa/malali area, are described below:

Link ID	Flow	Velocity	Unit Head loss	Friction Factor
	LPS)	(m/s)	(m/km)	
Pipe 2	-281.44	2.24	116.65	0.183
Pipe 3	-251.16	2.00	92.90	0.183
Pipe 4	38.58	0.79	33.74	0.268
Pipe 6	-30.99	0.44	7.48	0.229
Pipe 11	-1.73	0.35	85.61	1.129
Pipe 12	0.81	0.18	28.99	1.280

http://www.ijesrt.com

Pipe 13	0.73	0.17	23.83		1.281	
Pipe 14	-0.68	0.15	20.85		1.281	
Pipe 15	-1.53	0.35	103.62	7	1.277	
Pipe 19	16.31	0.33	6.0)4	0.268	
Pipe 20	5.27	0.67	177.62	7	0.776	
Pipe 21	4.56	0.58	133.43	3	0.776	
Pipe 22	-6.37	0.81	260.1	9	0.775	
Pipe 23	-290.52	2.31	 124.30)	0.183	
Pipe 24	-317.792.53	}	148.72	0.183		
Pipe 25	7.7	2	0.98	381.51		0.775
Pipe 26	-320	5.27	2.60	156.76		0.183
Pipe 27	11.8	35	0.67	69.05		0.452
Pipe 28	3.18	3	0.63	288.02		1.128
Pipe 30	1.02	2	0.20	29.55		1.131
Pipe 32	-0.2	1	0.01	0.00		0.034
Pipe 36	6.07	7	0.34	18.13		0.452
Pipe 37	-0.4	5	0.03	0.10		0.440
Pipe 39	-3.4	3	0.19	5.79		0.453
Pipe 40	-4.1	3	0.23	8.41		0.453
Pipe 41	-0.2	4	0.01	0.00		0.032
Pipe 43	1.32	1	0.03	0.04		0.274
Pipe 44	0.70)	0.04	0.25		0.458
Pipe 45	0.67	7	0.04	0.23		0.459
Pipe 8	-9.08		0.18	1.87		0.269
Pipe 46	-11.54	1	0.24	3.02		0.268
Pipe 47	-1.67		0.03	0.06		0.270
Pipe 48	0.67		0.09	2.94		0.782
Pipe 50	-378.2	78	3.01	211.28		0.183
Pipe 53	12.95		1.65	1072.85		0.775

http://www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

[1713-1728]

Pipe 55	8.70	1.11	485.06	0.775
Pipe 56	0.82	0.10	4.29	0.781
Pipe 57	-14.41	0.11	0.31	0.183
Pipe 58	-6.40	0.05	0.06	0.185
Pipe 59	12.62	1.61	1019.04	0.775
Pipe 62	-2.10	0.42	125.07	1.129
Pipe 63	-1.42	0.28	57.57	1.130
Pipe 64	0.15	0.03	0.08	0.135
Pipe 66	0.94	0.19	25.24	1.132
Pipe 67	0.82	0.05	0.33	0.457
Pipe 68	1.55	0.20	15.37	0.778
Pipe 69	0.70	0.09	3.19	0.781
Pipe 70	0.30	0.02	0.03	0.266
Pipe 72	-0.51	0.03	0.03	0.110
Pipe 73	-1.03	0.01	0.00	0.215
Pipe 74	2.50	0.02	0.01	0.186
Pipe 75	1.79	0.01	0.00	0.179
Pipe 76	9.51	0.13	0.71	0.230
Pipe 80	26.56	0.54	16.00	0.268
Pipe 81	0.82	0.01	0.00	0.051
Pipe 83	10.26	1.31	674.19	0.775
Pipe 84	9.56	1.22	585.02	0.775
Pipe 82	0.76	0.10	3.72	0.781
Pipe 85	-0.73	0.09	3.45	0.781
Pipe 86	-18.06	2.30	2087.11	0.775
Pipe 87	-0.91	0.12	5.38	0.780
Pipe 88	0.76	0.04	0.29	0.456
Pipe 91	0.82	0.16	18.99	1.133
Pipe 92	-0.69	0.16	21.38	1.281

http://www.ijesrt.com

Pipe 65	1.46	0.33	95.04	1.277
Pipe 93	2.17	0.49	208.17	1.276
Pipe 94	1.73	0.39	132.63	1.276
Pipe 16	-380.24	3.03	212.91	0.183
Pipe 1	-471.68	3.75	327.61	0.183
Pipe 60	8.75	0.12	0.60	0.230
Pipe 77	8.05	0.11	0.51	0.230
Pipe 95	7.34	0.10	0.42	0.230
Pipe 96	6.61	0.09	0.34	0.230
Pipe 97	5.91	0.08	0.27	0.230
Pipe 98	5.12	0.07	0.21	0.231
Pipe 99	3.63	0.05	0.10	0.231
Pipe 100	2.92	0.04	0.07	0.231
Pipe 101	2.22	0.03	0.04	0.230
Pipe 102	1.52	0.02	0.02	0.237
Pipe 103	0.76	0.01	0.00	0.165
Pipe 104	3.66	0.01	0.00	0.125
Pipe 105	3.66	0.01	0.00	0.136
Pipe 106	2.95	0.01	0.00	0.122
Pipe 107	2.11	0.01	0.00	0.136
Pipe 108	1.43	0.00	0.00	0.074
Pipe 109	0.70	0.00	0.00	0.000
Pipe 34	-1.02	0.06	0.51	0.456
Pipe 78	-1.78	0.10	1.56	0.454
Pipe 110	-4.27	0.54	116.77	0.776
Pipe 111	-5.06	0.64	163.79	0.776
Pipe 112	-5.82	0.74	216.62	0.775
Pipe 113	1.68	0.09	1.39	0.454
Pipe 114	0.97	0.06	0.47	0.456
Pipe 115	0.31	0.02	0.01	0.125

Pipe 116	0.55	0.03	0.15	0.460
Pipe 117	-1.75	0.35	87.07	1.129
Pipe 118	-2.48	0.49	174.92	1.128
Pipe 119	-7.04	0.40	24.37	0.452
Pipe 120	-7.86	0.44	30.34	0.452
Pipe 123	-4.08	0.81	472.36	1.127
Pipe 124	-8.81	0.18	1.77	0.269
Pipe 125	-9.52	0.19	2.06	0.269
Pipe 126	-379.56	3.02	212.15	0.183
Pipe 127	-380.24	3.03	212.91	0.183
Pipe 128	0.03	0.28	615.20	1.891
Pipe 129	-0.78	0.10	3.97	0.781
Pipe 131	2.96	0.02	0.01	0.190
Pipe 132	1.66	0.01	0.00	0.201
Pipe 133	0.82	0.01	0.00	0.000
Pipe 134	6.17	0.13	0.87	0.269
Pipe 135	5.39	0.11	0.66	0.269
Pipe 136	4.68	0.10	0.50	0.269
Pipe 137	1.57	0.36	109.33	1.277
Pipe 138	0.78	0.18	27.19	1.280
Pipe 139	-0.03	0.01	0.00	0.108
Pipe 140	36.31	0.74	29.89	0.268
Pipe 141	33.85	0.69	25.97	0.268
Pipe 142	-0.17	0.00	0.00	0.309
Pipe 143	-0.70	0.04	0.25	0.458
Pipe 144	-1.52	0.09	1.14	0.455
Pipe 145	-2.22	0.13	2.44	0.454
Pipe 5	-339.75	2.70	169.99	0.183
Pipe 10	-341.36	2.72	171.60	0.183
Pipe 18	-350.88	2.79	181.30	0.183

Pipe 29	-351.72	2.80	182.17	0.183
Pipe 31	-365.07	2.91	196.26	0.183
Pipe 33	-1.67	0.33	78.96	1.129
Pipe 35	-1.70	0.34	82.67	1.129
Pipe 38	-31.69	0.45	7.82	0.229
Pipe 42	-33.23	0.68	25.03	0.268
Pipe 49	7.27	0.41	26.00	0.452
Pipe 51	4.37	0.25	9.42	0.453
Pipe 54	0.70	0.14	14.13	1.134
Pipe 61	2.22	0.44	140.40	1.128
Pipe 71	1.43	0.29	58.58	1.130
Pipe 7	0.73	0.17	23.83	1.281
Pump 52	193.89	0.00	-72.15	0.000

Network Table – Nodes (Junctions)

Node ID	Demand	Head	Pressure	
	(LPS)	(M)	M)	
Junc 2	0.00	654.15	69.15	
Junc 3	0.70	695.02	106.02	
Junc 4	0.79	715.35	125.35	
Junc 5	0.70	711.29	122.29	
Junc 6	0.76	707.69	98.69	
Junc 7	0.79	704.83	92.83	
Junc 8	0.84	701.06	89.06	
Junc 9	0.73	698.95	89.95	

http://www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

[1713-1728]

Junc 10	0.70	699.88	87.88
Junc 11	0.76	704.83	90.83
Junc 12	0.76	701.33	85.33
Junc 13	0.73	695.37	78.37
Junc 14	0.73	694.98	74.98
Junc 15	0.84	708.64	93.64
Junc 16	0.82	732.50	118.50
Junc 17	0.73	780.94	175.94
Junc 18	0.70	778.59	173.59
Junc 19	0.70	752.71	155.71
Junc 20	0.67	738.00	140.00
Junc 21	0.76	777.38	163.38
Junc 22	0.82	691.04	83.04
Junc 23	0.73	697.42	79.42
Junc 24	0.70	782.54	182.54
Junc 25	0.76	816.83	212.83
Junc 26	0.73	619.62	15.62
Junc 27	0.82	848.56	246.56
Junc 28	0.82	840.23	238.23
Junc 29	0.70	809.19	207.19

Junc 30	0.73	761.11	162.11	
Junc 31	0.70	758.06	161.06	
Junc 32	0.79	758.05	165.05	
Junc 33	0.76	758.02	148.02	
Junc 34	0.76	758.03	148.03	
Junc 35	0.82	758.36	148.36	
Junc 36	0.73	833.72	223.72	
Junc 37	0.70	829.90	216.90	
Junc 38	0.76	829.92	215.92	
Junc 39	0.70	831.19	217.19	
Junc 40	0.79	833.72	222.72	
Junc 41	0.82	834.05	224.05	
Junc 42	0.84	834.05	225.05	
Junc 43	0.70	834.00	217.00	
Junc 44	0.67	834.02	221.02	
Junc 45	0.76	834.28	223.28	
Junc 46	0.79	834.28	227.28	
Junc 47	0.67	835.39	774.39	
Junc 48	0.73	835.91	227.91	
Junc 49	0.76	954.38	345.38	

Junc 50	0.79	860.50	255.50
Junc 51	0.82	874.25	263.25
Junc 52	0.84	887.00	277.00
Junc 53	0.73	905.25	294.25
Junc 54	0.79	992.46	381.46
Junc 55	0.00	1151.93	520.93
Junc 56	0.70	777.45	171.45
Junc 57	0.82	859.66	248.66
Junc 58	0.76	777.46	169.46
Junc 59	0.67	755.22	138.22
Junc 60	0.73	770.95	151.95
Junc 61	0.76	750.87	133.87
Junc 62	0.79	750.89	134.89
Junc 63	0.79	753.45	138.45
Junc 64	0.82	750.78	132.78
Junc 65	0.84	769.37	149.37
Junc 66	0.70	768.45	146.45
Junc 67	0.73	777.46	168.46
Junc 68	0.76	777.46	167.46
Junc 69	0.82	777.45	167.45

Junc 70	0.82	777.46	159.46	
Junc 71	0.79	777.46	168.46	
Junc 72	0.70	777.46	169.46	
Junc 73	0.76	1448.04	858.04	
Junc 74	0.76	1449.05	818.05	
Junc 75	0.73	1448.09	845.09	
Junc 76	0.00	654.15	73.15	
Junc 77	0.70	654.15	44.15	
Junc 78	0.70	828.40	237.40	
Junc 79	0.82	848.56	235.56	
Junc 80	0.76	624.70	23.70	
Junc 81	0.67	771.89	153.89	
Junc 82	0.70	677.78	74.78	
Junc 83	0.76	1448.05	840.05	
Junc 84	0.73	754.03	140.03	
Junc 85	0.79	757.81	143.81	
Junc 86	0.70	753.32	139.32	
Junc 87	0.82	690.07	81.07	
Junc 88	0.70	716.67	109.67	
Junc 89	0.84	780.00	173.00	

Junc 100	0.70	1448.78	830.78
Junc 102	0.73	654.15	51.15
Junc 103	0.82	836.89	225.89
Junc 104	0.76	758.12	153.12
Junc 105	0.79	774.38	171.38
Junc 106	0.73	782.89	175.89
Junc 107	0.70	758.19	152.19
Junc 108	0.70	780.53	173.53
Junc 109	0.76	1448.14	831.14
Junc 110	0.67	1066.74	446.74
Junc 111	0.82	832.94	221.94
Junc 112	0.70	1448.19	841.19
Junc 113	0.84	777.46	165.46
Junc 114	0.70	1448.65	836.65
Junc 115	0.79	833.91	220.91
Junc 116	0.73	1448.53	838.53
Junc 117	0.70	1448.06	845.06
Junc 118	0.82	691.04	91.04
Junc 120	0.79	696.49	96.49
Junc 90	0.70	1448.05	850.05

Junc 91	0.70	1448.05	849.05
Junc 92	0.76	1448.04	850.04
Junc 93	0.70	654.15	50.15
Junc 94	0.82	829.04	224.04
Junc 95	0.84	654.15	51.15
Junc 96	0.67	654.15	51.15
Junc 97	0.70	829.38	226.38
Junc 98	0.76	803.88	201.88
Junc 99	0.70	833.80	229.80
Resvr 123	-389.75	1450.00	0.00
Resvr 1	277.78	582.00	0.00
Tank 122	8.80	625.00	10.00
Tank 121	17.33	620.00	10.00

Conclusion

The main focused of this researchisto analyze the existing water distribution network in order to investigate its adequacy in performance of its function, implementation and its usage. At the end of the analysis theresults revealed the following deficiencies on the existing pipe line network:

(1) A situation encountered in the studied water distribution network is that of improper connections on the pumping main which supplies water to the reservoir, this may cause a problem to the reservoir of not getting to full designed capacity.

(2) Also the result obtained revealed a problem of low pressure in some portion of the network; this may point toward the likelihood of a closed valve in the area, or as result of several factors such as: illegal connections, leakages and extension of water services to other areas

without improving the designed water supply demand from the treatment plant.

(3) It was observed that the existing network on the recent topographical map does not have a wider coverage of water distribution to some parts of the area; this is as a result of rapid residential expansion in the area.

Recommendations

The foregoing deficiencies are enough to cause water crisis in the study area, having obtained these, it is recommended to:

(a) Use one of the optimization techniques to optimize the network in order to resolve the observed deficiencies.
(b)-Use one of the optimization software to develop a model of the new design /expansion, and then simulate flow characteristics and capacities for optimum distribution of water in the area.

(c)-Use the outcome to inform the concerned government agency on what should be done to ensure adequate water supply to various consumers who reside in Badarawa and Malali area.

References

- Abebe, A.J. and Solomatine, D.P. (1998). "Application of global optimization to the design of pipe networks." 3rd International Conferences on Hydro informatics, Copenhagen, Denmark, pp. 989-996 Journal of The Institution of Engineers, SingaporeVol. 44 Issue 1 2004106
- [2] Alperovits, E. and Shamir, U. (1977). "Design water distribution systems." Water Resources Research, Vol. 13(6), pp. 885-900. Chiplunkar, A.V., Mehndiratta, S.L. and Khanna, P. (1986) "Looped water distribution System optimization for single loading." Journal of Environmental Engineering, Vol. 112, No. 2, pp. 265-279.
- [3] Cunha, M.D.C., and Sousa, J. (1999). "Water Distribution Network Design Optimization: Simulated Annealing Approach." Journal of Water Resources Planning and Management, Vol. 125, No. 4, pp.215-221.
- [4] Dandy, G.C., Simpson A.R., and Murphy L.J. (1996). "An improved genetic algorithm for Pipe network optimization." Water Resources Research, Vol. 32, No 2, pp. 449-458. Duan, Q., Sorooshian, S., and Gupta, V. (1992). "Effective and efficient global optimization for conceptual rainfall-runoff models.", Water Resources Research, Vol. 28, No.4, pp. 1015-1031.
- [5] Eiger, G., Shamir, U., and Ben-Tal A. (1994).
 "Design of water distribution networks.", Water Resources Research, Vol. 30, No. 9, pp. 2637-2646.
- [6] Eusuff, M.M. and Lansey, K.E.,(2003).
 "Optimization of Water Distribution Network Design." Journal of Water Resources Planning and Management, ASCE, Vol. 129, No. 3, pp. 210-225
- [7] Kessler, A. and Shamir, U. (1989). "Analysis of the linear programming gradient method for Optimal design of water supply networks." Water Resources Research, Vol. 25, No.7, pp. 1469-1480.

http://www.ijesrt.com

- [8] Savic, D.A. and Walters, G.A. (1997). "Genetic algorithms for least-cost design of water Distribution networks." Journal of Water Resources Planning and Management, ASCE, Vol. 123, No. 2, pp. 67-77.
- [9] Tospornsampan J, Kita J. Ishii M. and Kitamura. Y [2007]. Split-pipe Design of Water Distribution Networks using a Combination of Tobu Search and geneticAlgorithm. International Journal of Computer, Information and Systems Science, and Engineering.